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Abstract. I present a selection of CP-PACS and UKQCD data for the pseudo-Goldstone masses in Nf = 2
QCD with doubly degenerate quarks. At least the more chiral points should be consistent with Chiral
Perturbation Theory for the latter to be useful in an extrapolation to physical masses. I find consistency
with the chiral prediction but no striking evidence for chiral logs. Nonetheless, the consistency guarantees
that the original estimate, by Gasser and Leutwyler, of the Nf = 2 QCD low-energy scale Λ3 was not
entirely wrong.

Introduction

Ever since numerical lattice QCD computations have been
done, the spectrum of light mesons has served as a bench-
mark problem. This is still true today, as actions respect-
ing the global chiral symmetry among the light flavours
are being tested and several groups have embarked on
ambitious simulations of “full” QCD with two or possi-
bly more dynamical flavours. These developments address
one of the key issues in low-energy QCD. The fact that
chiral symmetry is both spontaneously and explicitly bro-
ken generates pseudo-Goldstone bosons, i.e. particles that
dominate (for small enough quark masses) the long-range
behaviour of correlators between external currents and
which are collectively called “pions”.

The lattice is not the only framework to address the
low-energy structure of QCD. In the old days PCAC re-
lations were exploited to predict the dependence of low-
energy observables on shifts in the quark masses and ex-
ternal momenta. The one best known is

F 2
πM2

π = (mu+md) |〈0|q̄q|0〉| + O(m2) (1)

which connects the pion mass and decay constant to the
product of the explicit and spontaneous symmetry break-
ing parameters. However, the Gell-Mann – Oakes – Renner
relation (1) does not give a prediction how Fπ and Mπ

separately depend on the quark mass. And in the real
world the latter may be shifted only by a discrete amount
(e.g. by replacing d → s, π → K one gets a leading or-
der prediction for the quark mass ratio ms/m with m ≡
(mu+md)/2).

Today, the first limitation is overcome, since the suc-
cessor of PCAC, Chiral Perturbation Theory [1], gives de-
tailed predictions how either Mπ or Fπ individually de-
pends on the quark mass m. And – in principle – the

second problem is gone since one may vary m continu-
ously in a lattice computation. Therefore, it seems natu-
ral to combine the two approaches to benefit from their
respective advantages. However, for that aim quarks need
to be taken sufficiently light, and this is a numerical chal-
lenge on the lattice. Below, an elementary test is presented
whether this is already achieved in present state-of-the-art
results for M2

π versus m, as published by the CP-PACS [2]
and UKQCD [3] collaborations. The idea is to restrict the
analysis to the “doubly degenerate” case with Nf = 2
O(a) improved Wilson quarks, i.e. to consider only the
subset where both valence-quarks are exactly degenerate
with the sea-quarks, as this avoids additional assumptions
of the “partially quenched” framework.

Prediction by Chiral Perturbation Theory

Here, I give a brief summary of the work by Gasser and
Leutwyler (GL), with an application to lattice data in
mind.

GL have calculated the substitute for the GOR re-
lation (1) to NLO in Chiral Perturbation Theory (XPT)
with Nf = 2 quarks [1]. To that order, two low-energy con-
stants1 from the LO Lagrangian appear (F = limm→0 Fπ,
B = − limm→0〈0|q̄q|0〉/F 2) together with the finite parts

1 Unlike F , the other LO “constant” B is scheme- and scale-
dependent, as is m. In the chiral representation, only the prod-
uct mB appears which is RG-invariant (cf. (5)). In order to de-
termine B and m separately, a lattice computation is needed;
the result of the CP-PACS study [2] along with (5) for the
physical pion is

mphys
(
MS, µ ∼ 2 GeV

) � 3.5 ± 0.2 MeV ,

B
(
MS, µ ∼ 2 GeV

) � 2.8 ∓ 0.15 GeV (2)
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of the li in the NLO Lagrangian. Restricted to the degen-
erate case their result [1] takes the form

M2
π =M2 +

1
F 2

(
M4

32π2 log
(

M2

µ2

)
− 2M4 lr3(µ)

)
(3)

Fπ =F +
1
F

(
− M2

16π2 log
(

M2

µ2

)
+ M2 lr4(µ)

)
(4)

M2 ≡2mB . (5)

Note that (3, 4) has the typical structure of a NLO pre-
diction: A chiral logarithm summarizing the contribution
from the pion loops appears together with a counterterm.
The lri are the renormalized GL coefficients, i.e. they are
the descendents of the li which appear in the NLO La-
grangian and which are divergent quantities. As a result,
the lri depend on the (chiral) renormalization scale µ. In
the dimensionally regularized theory one has [1]

li = lri(µ) + γiλ(µ) (6)

λ(µ)=
−1

16π2µ4−d

(
1

4 − d
+

log (4π) + Γ ′(1) + 1
2

)
(7)

lri(µ)= lri(µ
�) − γi

16π2 log
(

µ

µ�

)
(8)

and the β-function coefficients γi are known. In the present
context only γ3 = − 1

2 , γ4 = 2 [1] are relevant, and this
suggests that one rewrites (3, 4) with the help of

lri =
γi

32π2

(
l̄i + log

(
M2

µ2

))
, (9)

where the µ dependence in lri = lri(µ) is traded for an M
dependence in l̄i = l̄i(M), to get [1]

M2
π =M2

(
1 − M2

32π2F 2 l̄3 + O(M4)
)

(10)

Fπ =F

(
1 +

M2

16π2F 2 l̄4 + O(M4)
)

. (11)

The NLO part is given in terms of the LO parameters F, B
and the NLO coefficients l̄3, l̄4. While the former two are
known quite accurately, for the l̄i only their running in
M2 is known exactly and the phenomenological estimate
of the integration constants has comparatively large error-
bars. Gasser and Leutwyler give in their initial paper [1]
the estimate

l̄3(mphys) = 2.9 ± 2.4 , l̄4(mphys) = 4.3 ± 0.9 (12)

for real world quark masses. It turns out that even this
limited information is useful, since it determines the cur-
vature of Mπ as a function of the quark mass. Close to the
chiral limit, both l̄i are positive and as a consequence M2

π

does not rise strictly linear in m but turns right, while Fπ

has a positive first derivative in m. More specifically, (12)
translates into

Mπ,phys �139 MeV , Fπ,phys �92.4 MeV
⇐⇒ Mphys �141 MeV , F �86.1 MeV (13)

which means that the physical pion is somewhat lighter
than it would be, if the LO relation were exact, while
the decay constant exceeds its value in the chiral limit by
∼7%.

A seemingly formal point which, in the end, proves
convenient in analyzing the lattice data is the following.
A naive look at (10) suggests that the typical structure
of a NLO prediction is gone – rather than a M4 and a
M4 log

(
M2
)

contribution, only the polynomial part seems
left. The point is that this impression is entirely mislead-
ing; the IR divergencies (which are genuine to QCD in the
chiral limit) are not gone, they are just hidden in the l̄i.
The situation is, in fact, opposite – the M4 part has been
eliminated in favour of a pure M4 log

(
M2
)

contribution,
and the last step is to make this apparent. The quark mass
dependence of l̄3 is given through

log
(

Λ2
i

M2

)
= log

(
Λ2

i

M2
phys

)
+ log

(
M2

phys

M2

)

= l̄i(mphys) + log

(
M2

phys

M2

)
= l̄i(m) (14)

and together with (5), the relation takes its final form (see
e.g. [4])

M2
π =2mB − m2B2

8π2F 2 log
(

Λ2
3

2mB

)
+ O(m3) (15)

Fπ =F +
mB

8π2F
log
(

Λ2
4

2mB

)
+ O(m3) (16)

where Λ4, Λ3 represent universal low energy scales. The
estimates (12) translate into

Λ3 = 0.6 GeV
+1.4 GeV
−0.4 GeV

,

Λ4 = 1.2 GeV
+0.7 GeV
−0.4 GeV

. (17)

It is worth emphasizing that all four parameters F, M2 =
2Bm, Λ3, Λ4 do not depend on the QCD renormalization
scheme [1], i.e. they are the proper physical low-energy
parameters at order O(p4). Furthermore the Λi do not de-
pend on the quark masses, and this means that the repre-
sentation (15, 16) is perfectly suited to analyze the lattice
data even if they are gotten at quark masses larger than
m ≡ (mu+md)/2 in the real world – as long as they are
not beyond the regime of validity of the chiral expansion
itself.

The latter point is one of the key issues in the com-
parison we aim at. The chiral expansion is known to be
asymptotic, and this means that increasing the order will
enhance the accuracy near the chiral limit – at the price of
worsening the prediction for heavier masses. What is the
“critical scale” beyond which the chiral expansion “ex-
plodes” is, a priori, not known. From a formal point of
view, one might think that (10, 11) indicate that the ex-
pansion is in M/(4πF ) and hence hope that it is good
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for pion masses up to 1 GeV. In this paper I will argue
that watching the convergence pattern at a fixed quark
mass gives a more reliable estimate what is the permissi-
ble range. This is facilitated since the NNLO expression
for M2

π (with Nf = 2) is known [5,6]. The result reads (for
the presentation I follow [4])

M2
π = 2mB

(
1 − mB

16π2F 2 log
(

Λ2
3

M2

)
(18)

+
m2B2

64π4F 4

{
17
8

(
log
(

Λ2
M

M2

))2

+ kM

}
+ O(m3)

)

where ΛM is implicitly defined through 51 log
(

Λ2
M

µ2

)
=

28 log(Λ2
1

µ2 ) + 32 log
(

Λ2
2

µ2

)
− 9 log

(
Λ2

3
µ2

)
+ 49 and the mass-

independent kM accounts for the remainder at O(p6), in
particular the new counterterms. Phenomenological values
for ΛM and kM will be mentioned below.

Lattice data and chiral fits

We are now in a position to esteem the results by the CP-
PACS and UKQCD collaborations for the quark mass de-
pendence of the pion mass. We shall consider, out of these
Nf = 2 data, only the two-fold degenerate case where both
valence quarks have the same mass and where they are,
at the same time, exactly degenerate with the sea quarks
so that the theory is unitary.

The CP-PACS collaboration has simulated various
(β, κ) combinations with an RG improved gauge action
and a mean-field improved clover quark action [2]. They
use a grid of size 123 ×24, 163 ×32, 243 ×48, 243 ×48 at
β = 1.8, 1.95, 2.1, 2.2, respectively, which leads to a lat-
tice spacing, if determined through the ρ mass, between
0.215 fm and 0.087 fm and hence a spatial box size between
2.58 fm and 2.08 fm. With so much information at hand,
one could, in principle, attempt a continuum extrapolation
for M2

π versus the sum of the (degenerate) quark masses,
2m. However, non-perturbative renormalization might be
necessary, and/or the lattice spacing might be too large
at the lower β values. For this reason, I have decided to
concentrate on the β = 2.1 data, since here discretization
effects are not supposed to be too large, and good statis-
tics is available. At that β value, even the lightest pion is
unlikely to suffer from finite-size effects, since MπL > 7,
and the lattice spacing determined via the ρ mass is of or-
der 0.1 fm and hence comparable with that in the UKQCD
simulations.

The UKQCD collaboration works on a 163 × 32 grid,
using different actions: Wilson glue and non-perturbati-
vely O(a) improved clover quarks [3]. Another point in
which they differ from CP-PACS is a tactical one: they try
to relax β in pushing κsea up (i.e. the quark mass down)
such that the lattice spacing, in units of r0, stays constant.
Numerically, it is a ∼ 0.1 fm for the data considered be-
low (though the ensemble at (β, κsea) = (5.2, 0.1355) is not
matched any more), and the hope is that the size of dis-
cretization effects would be approximately constant. This

choice implies that the physical box size stays constant,
too, and the bound MπL>4.5 maintained makes one feel
comfortable that finite size effects are small.

The plan of this article is to ignore that in princi-
ple a continuum extrapolation is needed and to compare
in a first step the two datasets on a “as-is” basis with
the LO/NLO/NNLO prediction from Chiral Perturbation
Theory in the continuum. With the relevant low-energy
constants on the chiral side given in physical units, r−1

0
must be so, too. In this article, this is done through the as-
sumption that r−1

0 represents a universal low-energy scale,
unaffected by unquenching effects (cf. (iii) in discussion
below); the numerical value used is r0 = 0.5 fm [7].

On the lattice, there are two definitions of the “quark
mass”, one through the vector Ward-Takahashi identity
(VWI mass), one through the axial identity (AWI mass).
The bare masses (open symbols in Fig. 1) need not agree,
while after renormalization (filled symbols in Fig. 1) they
would (up to O(a2) effects) if the renormalization fac-
tors were computed non-perturbatively. For unquenched
(Nf = 2) data the relevant non-perturbative factors are
not yet available. For this reason, I have decided to re-
normalize both the CP-PACS and the UKQCD data at
one-loop order (the details being given in the appendices).
In the case of the CP-PACS data this basically repeats
their calculation [2], albeit with two notable differences:
First, the scale is set through the measured r0, since this
is the only possibility with the UKQCD data. Second, the
“boost factor” u0 is derived from the measured plaquette
rather than the plaquette in the chiral limit, since in the
UKQCD data there is no uniquely defined chirally extrap-
olated version. This perturbative calculation then lays the
ground on which the CP-PACS and UKQCD data may be
compared to each other and to the chiral prediction.

Figure 1 displays (Mπr0)2 versus the renormalized
quark masses with filled symbols, open symbols indicate
the bare data to visualize the shift. In the upper part
the renormalization was performed with the cSW values as
they were used in the simulations (coming from a mean-
field analysis [2] or the Alpha study [3,8]). In the lower
part the renormalization factors were computed with
cSW = 1 throughout, which is a consistent choice at one-
loop order. Obviously, the overall consistency of the data
is much better with this latter choice, as is particularly ob-
vious from the quadratic fits (constrained to go through
zero) to the AWI data. Henceforth, we shall stick to the
latter choice (cSW = 1), but it is useful to keep in mind
that the difference to the upper part is a clear indication
of the size of inherent perturbative uncertainties. Finally,
it is worth mentioning that all error-bars in this article
represent only statistical errors.

We now turn to the physics content. To convey a feel-
ing for the scales, I mention that at 2mr0 = 1 the sum of
the valence quark masses is of order 400 MeV, i.e. about
four times as much as in a physical K, and the correspond-
ing “pion” weighs about 1 GeV. The physical kaon weighs
496 MeV, i.e. (MKr0)2 � 1.58. If the pion would satisfy
(Mπr0)2 �1.58 this would mean that its u- and d-quarks
are about half as heavy as the s-quark in the real world.
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Fig. 1. CP-PACS and UKQCD data converted to the form M2
π vs. 2m with masses in units of r−1

0 . Top: Perturbative re-
normalization with cSW as used in the simulations. Bottom: Same but cSW = 1 throughout. A quadratic fit, constrained to
go through zero, is applied to the renormalized AWI data. Segments of the asymptotic slope in the chiral limit highlight the
curvature

The lightest pion in the CP-PACS and UKQCD simula-
tions have (Mπr0)2 values 1.75 and 2.20, respectively, and
from this we conclude that their lightest u- and d- quarks
(in the unitary theory) have about 55% and 70% of the
mass of the physical strange quark.

With such heavy “light” quarks it is a priori not clear
whether XPT is of any use in an extrapolation to the phys-
ical u- and d-quark masses. In an attempt to shed a light
on this issue, Fig. 2 shows the renormalized data (as in the
bottom part of Fig. 1) together with the predictions from
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Fig. 2. LO/NLO/NNLO chiral predictions with phenomenological values for B, F, Λ3, ΛM , kM (±1σ variation included at each
order, cf. text for details) compared to the renormalized data in the version with cSW = 1. Note that the lines represent
parameter-free predictions, not fits

XPT at tree/one-loop/two-loop level (LO/NLO/NNLO).
The low-energy constants are taken from phenomenology,
i.e. these curves represent parameter-free predictions. At
LO the chiral prediction is a straight line with the slope
parameter B taken from (2); the ±1σ bounds are indicated
by dotted lines. At NLO the prediction is curved, and the
numerical values of the additional parameters are taken
from (13) and (17). Λ3 is varied within its phenomenolog-
ical ±1σ bound (full versus dotted lines – lowering Λ3 to
200 MeV yields the upper, increasing it to 2 GeV yields the
lower dotted line), with B, F fixed at their central values.
At NNLO the parameters ΛM , kM in (19) are determined
as follows. With Λ1 = 0.11±0.04

0.03 GeV, Λ2 = 1.2±0.06 GeV
[9] and (17) the relation beneath (19) gives

ΛM = 0.60±0.03 GeV (19)

where errors have been added in quadrature. This means
that over the range considered the uncertainty in ΛM is
neglibigle compared to that coming from kM . Phenomeno-
logical arguments indicate |kM | ∼ 2 [10], and the sum-rule
estimates for the NNLO counterterms given in [9] may be
converted into a more accurate estimate. For the purpose
of the present article it is sufficient to use kM = 0±2, and
the associate curves (holding B, F, Λ3, ΛM fixed at their
central values) are included in Fig. 2.

This information is sufficient to asses the chiral conver-
gence behaviour in M2

π versus 2m. To that aim we compare
the LO/NLO/NNLO predictions for a given quark mass.
Figure 3 shows the relative shift in M2

π when one more or-
der is included or the new low-energy constants are varied
within reasonable bounds. At first sight, the uncertainties

at higher orders due to the error bars of the counterterms
seem large, but one should keep in mind that the asso-
ciate shifts are 100% correlated over the whole range. For
instance, if the CP-PACS VWI point at 2mr0 ∼ 0.2 sits
on the −1σ curve (upper dotted NLO line in Fig. 2), then
the one at 2mr0 ∼ 0.4 should too, if only Λ3 needs to be
adapted. This means that precise lattice data are ideally
suited to reduce the error on lr3(µ) (or Λ3). Figure 3 shows
that the crossover where the uncertainty due to the NLO
exceeds that due to the LO contribution is at 2mr0 =
0.45/0.02/0.10 when Λ3 is taken at its central/+1σ/-1σ
value. By averaging with weights 2/1/1 one arrives at the
estimate that in the case of Mπ the chiral expansion is
sufficiently well-behaved that the NLO functional form is
useful for quark masses up to

2mr0 ≤ 0.25 ⇐⇒ (Mπr0)2 ≤ 2
⇐⇒ Mπ ≤ 560 MeV , (20)

and maybe more. This, if correct, means that current
state-of-the-art simulations make contact with the regime
where NLO-XPT holds, but so far a non-trivial “lever
arm” which is needed to make model independent pre-
dictions in the deeply chiral regime, is likely missing.

While it is clear that future simulation data will allow
to test the prediction (20) and provide, if it is correct,
the lever arm needed, one might, already at this time, go
ahead and try what comes out if one assumes that the
estimate (20) is too pessimistic and hence uses the NLO
chiral ansatz to fit the data over an extended range. This
is what we shall do below, but it is clear that this attempt
is rather speculative and results should be taken with care.
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π versus 2mr0 in XPT – due to the uncertainty in B at LO (light), due to NLO contribution with

B fixed at its central value, Λ3 varied within 1σ bound (intermediate), and due to NNLO contribution with B and Λ3 fixed at
their central values, kM ∈ {0, ±2} (dark)
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Fig. 4. Same as Fig. 2, after dividing by 2mr0. Still, lines represent parameter-free chiral predictions at LO/NLO/NNLO (from
light to dark colour), not fits

Since everything below is about the deviation from a
linear relationship, it is useful to make the curvature op-
tically visible. This is conveniently done by dividing out

a factor 2mr0. The result is displayed in Fig. 4 where the
predictions from XPT at LO/NLO/NNLO are included
for completeness. In this representation, the genuine fea-
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Table 1. Coefficients in the fits of the NLO functional form (21) to the degenerate CP-
PACS and UKQCD data with VWI (left) or AWI (right) definition of the quark masses,
after 1-loop renormalization as detailed in the appendix. Phenomenological values for
comparison; constrained values in brackets. In one case, there is such a shallow minimum
that some of the values are meaningless. In general, χ2 is underestimated, since the fact
that errors are correlated has been ignored. Since the main uncertainty is systematic, I
refrain from quoting statistical errors

Br0 Fπr0 Λ3r0 χ2/d.o.f. Br0 Fπr0 Λ3r0 χ2/d.o.f.

phenom. [1,2] 7.09 0.234 1.52 – 7.09 0.234 1.52 –

CP-PACS-a 10.1 (0.234) 3.34 2.40/2 8.84 (0.234) 3.30 2.45/2
CP-PACS-b 9.65 (0.234) 3.01 0.19/1 8.56 (0.234) 3.04 0.24/1
CP-PACS-c 8.28 0.599 4.27 0.07/1 7.53 0.443 3.83 0.05/1

CP-PACS-LO 7.85 – – 0.54/3 6.94 – – 1.24/3

UKQCD-a 7.96 (0.234) 3.17 0.83/2 9.98 (0.234) 3.94 0.06/2
UKQCD-b 7.56 (0.234) 2.86 0.36/1 9.96 (0.234) 3.93 0.06/1
UKQCD-c 5.97 × × 0.10/1 10.1 0.229 3.92 0.06/1

UKQCD-LO 6.65 – – 1.64/3 6.91 – – 2.14/3

ture of the NLO curve is that it lies below the LO constant
for light pions, but above if the (LO-) pion mass is larger
than Λ3.

To fit the data, one replaces 2mB by M2
π , since in

this form the data are plotted against something which is
directly measured and the change is of yet higher order in
the chiral counting. In other words, the statement is that
one should use the representation2

M̃2
π

2m̃
= B̃

{
1 − M̃2

π

32π2F̃ 2
π

log

(
Λ̃2

3

M̃2
π

)}
(21)

and adjust the 3 dimensionless parameters B̃ ≡ Br0, F̃ ≡
Fπr0, Λ̃3 ≡ Λ3r0.

Attempts to fit the data with either the VWI or the
AWI definition of the quark mass to formula (21) are
summarized in Table 1 and – for the AWI mass – il-
lustrated in Fig. 5. Since the parameter F̃π = Fπr0 =
92.4 MeV 0.5 fm � 0.234 is known, it is held fixed at its
physical value in (a, b) and fitted only in case (c). Fit (b)
differs from (a) in that the point with the heaviest quark
mass has been omitted. From the overall spread it is clear
that there are considerable systematic uncertainties and
this is why I refrain from quoting statistical errors.

Obviously, with the quality of the present data one
cannot claim direct evidence for chiral logs. Nonetheless,
it is worth noticing that fits (a) and (b) indicate that the
data are consistent with the logarithmic form (21) sug-
gested by NLO chiral perturbation theory. Moreover, that

2 Mathematically, formula (15, 21) is equivalent to the
expression (which one frequently finds in the literature)
M2

π/2Bm = 1 + 1
2y log(y) + Ay with y = 2Bm/(4πF )2 or

y = M2
π/(4πFπ)2, but one should keep in mind that the coun-

terterm A (which is proportional to lr3(µ), c.f. Sect. 2) is always
taken at the scale µ ∼ 4πFπ, i.e. if the fitting algorithm changes
Fπ, then the meaning of A changes while its numerical value
stays the same

the fit with Fπ held fixed at its physical value does not
dramatically change if the heaviest data point is omitted
(a→b), might indicate that the estimate (20) for the per-
missible range at NLO level is rather conservative. What
one can learn from Table 1 is that in QCD with Nf = 2
the low-energy parameter Λ3 does not differ by orders
of magnitude from the original estimate by Gasser and
Leutwyler [1]; all Λ3 values in Table 1 lie between the cen-
tral and the +1σ level in (17). This is important, since it
excludes – at least for Nf = 2 – an alternative scenario
of the chiral symmetry breaking in which B would not be
the adequate order parameter [11] (for an introduction to
this topic see [4]).

Discussion

The aim of the present note has been to compare the CP-
PACS and the UKQCD data for M2

π as a function of the
quark mass to each other and to the prediction from Chi-
ral Perturbation Theory (XPT). We have seen that after
renormalizing with 1-loop lattice perturbation theory the
two sets are reasonably consistent (maybe with the excep-
tion of the CP-PACS data with the VWI definition of the
quark mass). After dividing out a factor 2mr0 to “zoom
in” on the deviation from a linear behaviour, both sets
show very little curvature. Postponing the issue whether
it is permissible to compare non-continuum-extrapolated
lattice data to the prediction from XPT in the continuum
we found that the current size of the error-bars grants con-
sistency with the logarithmic form (21), albeit one cannot
claim evidence for chiral logs.

The situation might change as more precise data are
being released. In fact, the JLQCD collaboration claims
that their data with Nf = 2 non-perturbatively O(a) im-
proved clover fermions and standard (Wilson) glue are in-
consistent with NLO chiral perturbation theory, if they
keep the parameter Fπ fixed at its physical value [12,13].
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Fig. 5. Fits of the data with the AWI quark mass to the NLO functional form (21), together with the allowed band from
phenomenological estimate of Λ3. In spite of the bound (20) being ignored, the data fit well to the suggested form – even if
one insists on the phenomenological value of Fπ. Embarassingly, with the current error-bars the LO functional form is still
appropriate (cf. Table 1)

At this point it is mandatory to think about possible
reasons why the data might not coincide with the chiral
prediction. An incomplete list is the following one:

1. They need not, if the pions are too heavy. Most of
the data have been taken in a regime of quark masses
where there is no guarantee that XPT works. Phe-
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nomenological experience tells us that this expansion
works well for the physical K, i.e. for (Mπr0)2 ≤1.58.
I have argued that this condition might be relaxed to
(20). Even if this is true, at best 1 point from either
set survives, and hence there is, strictly speaking, no
room for trying the NLO-XPT ansatz which has 3 pa-
rameters (or 2 if Fπ is held fixed at its physical value).

2. Scaling violations, in particular implications of the bro-
ken chiral symmetry might be so severe that the chiral
logs – even if they exist in the mass range considered –
could be buried. To check one would have to perform a
continuum extrapolation or attempt a dynamical simu-
lation with fermions which obey the Ginsparg-Wilson
relation.

3. For unknown reasons (e.g. an algorithmic flaw), the
data might represent a partially quenched rather than
the fully unquenched situation. Obviously, this is a
rather remote possibility. The point is that the NLO
prediction M2

π/M2 = 1 + constM2 log
(
M2/Λ2

3
)

has
no genuine M2 term. On the other hand, in the par-
tially quenched case a true M2 contribution exists [14,
15]; hence even a perfectly linear behaviour in a plot
analogous to Fig. 4 or 5 does not necessarily imply un-
reasonable values of the low-energy constants.

Finally, I would like to highlight 4 points:
(i) So far, we have ignored systematic uncertainties.

Going back to Fig. 1 one sees that they are far from be-
ing negligible. What we see exemplifies the standard wis-
dom that perturbative renormalization factors which turn
out to deviate from 1 by, say, 10% call for either repeat-
ing the exercise with non-perturbatively determined Z-
factors or at much smaller lattice spacing. In the present
context this means that the figures in Table 1 should
not be taken as lattice determinations of the low-energy
constants F, B, Λ3. Nonetheless, even this preliminary at-
tempt shows that Λ3 cannot differ by orders of magnitude
from the original estimate by Gasser and Leutwyler [1].
Moreover, as the data get more precise – and under the
proviso that consistency is maintained – lattice determi-
nations of the scales Λ3 and Λ4 in conjunction with chiral
perturbation theory will yield precise predictions of intrin-
sically Minkowskian quantities, e.g. the I = 0, 2 pion-pion
scattering lengths (see [4] for the connection).

(ii) For a thorough comparison with chiral perturba-
tion theory, one needs to get control over the lattice arte-
facts. A safe way to do this is to first extrapolate all data
to the continuum. Then one can determine the permissi-
ble mass range and extrapolate in a second step to the
chiral limit. If it turns out that this order cannot be sus-
tained in practice, the chiral framework may be extended
to account for the main discretization effects. For the case
of unimproved fermions this has been done [16], and it is
clear that this approach could be generalized to improved
actions. The only disadvantage is the added number of
counterterms that need to be fixed from the data.

(iii) In the present note the scale is set through r̂−1
0

throughout. In the CP-PACS studies, r̂0 has been found to
strongly depend on m̂VWI or M̂2

π [2,17]. If r0 itself depends
on the sea-quark mass, normalizing all masses through

the measured r̂0 may not be the best way to compare to
XPT; maybe one should use r̂0,0 (the chirally extrapolated
version) instead.

(iv) Strictly speaking, the “phenomenological” value
of lr3 (or Λ3) that we used in comparing the lattice data
to the prediction from XPT is not quite adequate, since
the phenomenological determination is with ms fixed at
its physical value, while the lattice studies are Nf = 2
simulations, in other words here ms is sent to infinity. The
connection to the Nf = 3 GL coefficients Lr

i(µ) is given
by [18]

lr3 = 8 (2Lr
6 − Lr

4) + 4 (2Lr
8 − Lr

5)

− 1
576π2

(
log

(
limmu,d→0 M2

η

µ2

)
+ 1

)
(22)

[the limit on the r.h.s. refers to a situation with ms held
fixed at its physical value], and it is tempting to use it
as the starting point of a little gedanken experiment: As-
sume the s-quark mass would be such that even when it
is doubled the chiral expansion would not break down.
Equation (22) tells us that under these circumstances en-
hancing ms by a factor 2 (and hence roughly doubling
M2

η , too) would lower lr3 by 0.0001. Since (12) translates
into lr3(µ ∼ Mρ) = 0.0008 ± 0.0038 such a shift would be
negligible compared to the error-bar, and it seems there-
fore reasonable to assume that the effect of an added
third flavour in the simulations, fixed at the physical s-
quark mass (which would fully justify the comparison with
Nf = 2 XPT), would be small compared to the inherent
theoretical uncertainties.

Formula (22) is interesting in yet another respect, since
it tells us that lattice studies which pin down M2

π versus
2m (and hence Λ3 or lr3) have a say in another issue. In
the 3-flavour theory there is the famous “Kaplan Manohar
ambiguity”, i.e. the chiral Lagrangian stays invariant un-
der a simultaneous transformation of the quark masses

mu → mu + λmdms,

md → md + λmsmu,

ms → ms + λmumd, (23)

and an appropriate modification of Lr
6, L

r
7, L

r
8. This would,

in principle, allow to tune mu = 0 and hence provide a
simple and elegant solution to the strong CP problem
[19]. In XPT terminology it is the low-energy combina-
tion 2Lr

8(µ) − Lr
5(µ) that decides whether this is a vi-

able option [20]. In the past, XPT has been augmented by
theoretical assumptions or model calculations to exclude
mu = 0. More recently it has been proposed to determine
the Lr

i from lattice simulations [21] and important steps
in this program have been taken [22]. Formula (22) tells
us that a lattice determination of lr3, augmented by knowl-
edge about Lr

4 and Lr
6, helps to constrain mu = 0.

The present analysis certainly emphasizes the need to
compute renormalization factors non-perturbatively and
to perform a continuum extrapolation with dynamical
data.
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Appendix

A Renormalization of the VWI quark mass

Setup with

am = amVWI = log
(

1 +
1
2

(
1
κ

− 1
κc

))
� 1

2

(
1
κ

− 1
κc

)

and u0 = P 1/4 = ( 1
3 〈TrU�〉)1/4 [23]:

mVWI
MS (µ) = Zm(µa) (1 + bmam) m (24)

mVWI
MS (µ) = Z̃m(µa)

(
1 + b̃m

am

u0

)
m

u0
(25)

From [24], naive versus tadpole-improved, with g2 = 6/β
and g̃2 = g̃2

MS
(2 GeV):

Zm(µa) = 1 +
g2

4π

(
zm

3π
− 1

π
log
(
a2µ2)) (26)

Z̃m(µa) = 1 +
g̃2

4π

(
z̃m

3π
− 1

π
log
(
a2µ2)) (27)

From [25] (key to orig. literature: their [21-28]), for generic
actions:

1
g2
MS

(µ)
=

1
g2 +dg +dfNf +

11 − 2Nf /3
16π2 log

(
a2µ2) (28)

Wilson/Clover: dg = −0.4682, df = 0.0314917 (for
cSW = 1) and P = 1 − 1/3 · g2

1
g2
MS

(µ)
=

1
g2 − 0.4682 + 0.0314917Nf

+
11 − 2Nf /3

16π2 log
(
a2µ2) (29)

1
g̃2
MS

(µ)
=

P

g2 − 0.1349 + 0.0314917Nf

+
11 − 2Nf /3

16π2 log
(
a2µ2) (30)

zm = 12.953 + 7.738cSW − 1.380c2
SW (31)

z̃m = zm − π2 =

{
13.0 (cSW � 2)
9.44 (cSW = 1)

(32)

Iwasaki/Clover: dg = 0.1000, df = 0.0314917 (for
cSW = 1) and P = 1 − 0.1402g2,

R = 1 − 0.2689g2, thus 1 = P + 0.1402g2 = R +
0.2689g2 = 3.648P − 8 · 0.331R − 0.2006g2

1
g2
MS

(µ)
=

1
g2 + 0.1000 + 0.0314917Nf

+
11 − 2Nf /3

16π2 log
(
a2µ2) (33)

1
g̃2
MS

(µ)
=

P

g2 + 0.2402 + 0.0314917Nf

+
11 − 2Nf /3

16π2 log
(
a2µ2) (34)

1
g̃2
MS

(µ)
=

R

g2 + 0.3689 + 0.0314917Nf

+
11 − 2Nf /3

16π2 log
(
a2µ2) (35)

1
g̃2
MS

(µ)
=

3.648P − 2.648R

g2 − 0.1006 + 0.0314917Nf

+
11 − 2Nf /3

16π2 log
(
a2µ2) (36)

zm = 4.858 + 5.301cSW − 1.267c2
SW (37)

z̃m = zm − 0.4206π2 =

{
5.76 (cSW = 1.47)
4.74 (cSW = 1)

(38)

In [26] one finds:

Wilson/Clover : bm = −1/2 − 0.09623g2 + O(g4) (39)

b̃m = bm(1 − 1/12 · g̃2)
� −1/2 − 0.05456g̃2 (40)

Iwasaki/Clover : bm = −1/2 − 0.0509g2 + O(g4) (41)

b̃m = bm(1 − 0.03505g̃2)
� −1/2 − 0.0334g̃2 (42)

B Renormalization of the AWI quark mass

Setup with

mAWI,impa =
1
2
〈∂µAa,imp

µ (x)Oa(0)〉/〈P a(x)Oa(0)〉

and u0 = P 1/4 = ( 1
3 〈TrU�〉)1/4 [23]:

mAWI
MS (µ) =

ZA

ZP (µa)
1 + bAam

1 + bP am
mAWI,imp (43)

mAWI
MS (µ) =

Z̃A

Z̃P (µa)
1 + b̃Aam/u0

1 + b̃P am/u0
mAWI,imp (44)

From [24], naive versus tadpole-improved, with g2 = 6/β
and g̃2 = g̃2

MS
(2 GeV):

ZA = 1 +
g2

4π

zA

3π
,

ZP (µa) = 1 +
g2

4π

(
zP

3π
+

1
π

log
(
a2µ2)) (45)
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Table 2. Step-by-step renormalization of UKQCD quark masses with u0 defined via the
plaquette. Error bars include statistical errors only, naive error propagation throughout.
Note the disparity of g2

MS defined via (29) and that via (30). It makes a difference whether
cSW as used in the simulations is plugged in or cSW = 1 which is a consistent choice at the
order we are interested in

UKQCD (5.20,0.1355) (5.20,0.1350) (5.26,0.1345) (5.29,0.1340)

M̂π = Mπa [3] 0.294(4) 0.405(4) 0.509(2) 0.577(2)
r̂0 = r0/a [3] 5.041(40) 4.754(40) 4.708(52) 4.813(45)
(Mπr0)2 2.20(09) 3.71(14) 5.74(17) 7.71(20)

κc [3] 0.13645(3) 0.13663(5) 0.13709(3) 0.13730(3)
m̂VWI ≡ 1

2 ( 1
κ

− 1
κc

) 0.0257(08) 0.0442(13) 0.0702(08) 0.0897(08)
m̂AWI,imp [3] 0.0231(3) 0.0462(3) 0.0742(3) 0.0952(3)
P [28] 0.536294(9) 0.533676(9) 0.539732(9) 0.542410(9)
(a 2 GeV)2 ≡ (5.06773/r̂0)2 1.011(16) 1.136(19) 1.159(26) 1.109(21)
g2
MS(2 GeV) (29) 2.1640(45) 2.1309(46) 2.0813(58) 2.0714(49)

g̃2
MS(2 GeV) (30) 2.541(6) 2.510(6) 2.437(8) 2.423(7)

b̃m (40) -0.6387(3) -0.6369(4) -0.6330(4) -0.6322(4)
b̃A (56) 1.1750(4) 1.1728(4) 1.1678(5) 1.1669(5)
b̃P (58) 1.1773(4) 1.1752(4) 1.1701(6) 1.1691(5)

cSW [3] 2.0171 1.9497 1.9192
z̃m (31, 32) 13.0769 12.9243 12.8512
z̃A (47, 48) 2.73099 2.14587 1.88782
z̃P (49, 50) -16.4738 -16.081 -15.9094
Z̃m(a 2 GeV) (27) 1.2799(17) 1.2690(18) 1.2569(22) 1.2566(18)
Z̃A (46) 1.0586(1) 1.0579(1) 1.0442(1) 1.0386(1)
Z̃P (a 2 GeV) (46) 0.6472(1) 0.6590(2) 0.6781(3) 0.6808(3)

2mVWI
MS (2 GeV)r0 (25) 0.380(16) 0.603(25) 0.919(23) 1.181(24)

2mAWI
MS (2 GeV)r0 (44) 0.381(09) 0.705(13) 1.076(19) 1.398(21)

cSW 1
z̃m, z̃A, z̃P (32, 48, 50) 9.4414, -3.9244, -12.5134
Z̃m(a 2 GeV) (27) 1.2019(15) 1.192(16) 1.1852(20) 1.1869(17)
Z̃A (46) 0.9158(2) 0.9168(2) 0.9192(3) 0.9197(2)
Z̃P (a 2 GeV) (46) 0.7322(4) 0.7429(4) 0.7516(5) 0.7503(5)

2mVWI
MS (2 GeV)r0 (25) 0.357(15) 0.567(23) 0.867(21) 1.115(23)

2mAWI
MS (2 GeV)r0 (44) 0.291(07) 0.542(10) 0.854(16) 1.123(17)

Z̃A = 1 +
g̃2

4π

z̃A

3π
,

Z̃P (µa) = 1 +
g̃2

4π

(
z̃P

3π
+

1
π

log
(
a2µ2)) (46)

From [27], for generic actions:
Wilson/Clover:

zA = −15.797 − 0.248cSW + 2.251c2
SW (47)

z̃A = zA + π2 =

{
2.581 (cSW � 2)

-3.924 (cSW = 1)
(48)

zP = −22.596 + 2.249cSW − 2.036c2
SW (49)

z̃P = zP + π2 =

{
-16.372 (cSW � 2)
-12.513 (cSW = 1)

(50)

Iwasaki/Clover:

zA = −8.192 − 0.125cSW + 1.610c2
SW (51)

z̃A = zA + 0.4206π2 =

{
-0.746 (cSW = 1.47)
-2.556 (cSW = 1)

(52)

zP = −10.673 + 1.601cSW − 1.281c2
SW (53)

z̃P = zP + 0.4206π2 =

{
-6.936 (cSW = 1.47)
-6.202 (cSW = 1)

(54)

In [26] one finds:

Wilson/Clover : bA = 1 + 0.15219(5)g2 + O(g4) (55)

b̃A = bA(1 − 1/12 · g̃2)
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Table 3. Step-by-step renormalization of CP-PACS quark masses with u0 defined via the
plaquette. Error bars include statistical errors only, naive error propagation throughout. Note
the similarity of g2

MS defined via (33) and that via (34). There is little difference whether cSW

as used in the simulations is plugged in or cSW = 1 which is a consistent choice at the order we
are interested in

CP-PACS (2.10,0.1382) (2.10,0.1374) (2.10,0.1367) (2.10,0.1357)

M̂π = Mπa [2] 0.29459(85) 0.42401(46) 0.51671(67) 0.63010(61)
r̂0 = r0/a [2] 4.485(12) 4.236(14) 4.072(15) 3.843(16)
(Mπr0)2 1.746(19) 3.226(28) 4.427(44) 5.864(60)

κc [2] 0.138984(13)
m̂VWI ≡ 1

2 ( 1
κ

− 1
κc

) 0.02041(34) 0.04147(34) 0.06011(34) 0.08706(34)
m̂AWI,imp [2] 0.02613(18) 0.05267(22) 0.07564(38) 0.10748(51)
P [2] 0.6010819(84) 0.6000552(67) 0.5992023(76) 0.5980283(76)
R [2] 0.366883(13) 0.365297(10) 0.363979(12) 0.362139(12)
u0 ≡ P 1/4 0.880508(3) 0.880132(2) 0.879819(3) 0.879388(3)
(a 2 GeV)2 ≡ (5.06773/r̂0)2 1.277(07) 1.431(09) 1.549(11) 1.739(14)
g2
MS(2 GeV) (33) 1.8941(12) 1.8694(14) 1.8526(15) 1.8286(17)

g̃2
MS(2 GeV) (34) 1.8920(12) 1.8686(14) 1.8529(15) 1.8303(17)

g̃2
MS(2 GeV) (35) 1.7383(10) 1.7191(12) 1.7063(13) 1.6877(14)

g̃2
MS(2 GeV) (36) 2.4705(20) 2.4276(24) 2.3986(26) 2.3574(28)

b̃m (42) -0.56315(4) -0.56236(5) -0.56184(5) -0.56108(6)
b̃A (60) 1.07237(4) 1.07147(5) 1.07087(6) 1.07001(7)
b̃P (62) 1.07445(5) 1.07353(6) 1.07291(6) 1.07202(7)

cSW [2] 1.47
z̃m, z̃A, z̃P (38, 52, 54) 5.76145, -0.745545, -6.93649
Z̃m(a 2 GeV) (27) 1.08033(31) 1.07393(37) 1.06960(40) 1.06338(44)
Z̃A (46) 0.98809(1) 0.98824(1) 0.98834(1) 0.98848(1)
Z̃P (a 2 GeV) (46) 0.90090(19) 0.90753(24) 0.91201(27) 0.91846(31)

2mVWI
MS (2 GeV)r0 (25) 0.2217(44) 0.4174(50) 0.5723(57) 0.7642(66)

2mAWI
MS (2 GeV)r0 (44) 0.2571(27) 0.4859(42) 0.6675(65) 0.8889(89)

cSW 1
z̃m, z̃A, z̃P (38, 52, 54) 4.74084, -2.55584, -6.20184
Z̃m(a 2 GeV) (27) 1.06403(30) 1.05783(36) 1.05363(39) 1.04761(43)
Z̃A (46) 0.95917(3) 0.95968(3) 0.96001(3) 0.96050(4)
Z̃P (a 2 GeV) (46) 0.91263(20) 0.91912(25) 0.92351(28) 0.92981(32)

2mVWI
MS (2 GeV)r0 (25) 0.2183(43) 0.4111(49) 0.5637(56) 0.7529(65)

2mAWI
MS (2 GeV)r0 (44) 0.2463(26) 0.4659(40) 0.6403(63) 0.8532(86)

� 1 + 0.06886(5)g̃2 (56)
bP = 1 + 0.15312(3)g2 + O(g4) (57)

b̃P = bP (1 − 1/12 · g̃2)
� 1 + 0.06979(3)g̃2 (58)

Iwasaki/Clover : bA = 1 + 0.0733(5)g2 + O(g4) (59)

b̃A = bA(1 − 0.03505g̃2)
� 1 + 0.0383(5)g̃2 (60)

bP = 1 + 0.0744(12)g2 + O(g4) (61)

b̃P = bP (1 − 0.03505g̃2)
� 1 + 0.0394(12)g̃2 (62)

In all cases the relationship between zX and z̃X as well as
bX and b̃X (X ∈ {m, A, P}) is mine.

C Implementation with tadpole resummation

The renormalization with u0 defined via the plaquette is
traced in Table 2 for the UKQCD data. Alternatively, one
could define u0 as 1/(8κc), but this would bring different
perturbative coefficients than those listed in App. A/B.
Notice the effect of the tadpole resummation, i.e. the dif-
ference of the coupling g2

MS
computed via (29) and g̃2

MS
via

(30). The statistical uncertainty for the VWI quark mass
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is larger than that for the AWI definition due to a limited
accuracy of κc, which is defined in a partially quenched
sense [3].

For the CP-PACS data, both the plaquette P and the
rectangle R are published [2], and this gives, in principle,
the option to define the tadpole resummation (besides the
usual option 1/(8κc)) via (35) or (36), where the latter
choice reflects the specific combination used in the action.
All these options would, however, imply different pertur-
bative coefficients than those listed in App. A/B, i.e. we
restrict ourselves to the choice (34) along with u0 ≡ P 1/4.
It is interesting to see that the CP-PACS RG improved
action achieves agreement of g2

MS
with the standard g̃2

MS
(via (34)).

In the argument of the logarithm that converts to the
MS scheme, the lattice spacing is multiplied with a physi-
cal scale, here 2 GeV. This means that a must be assigned
a physical value, too. To compare like with like this is done
via the measured r0 in both sets, assuming r0 = 0.5 fm in
physical units. As a consequence, our Z factors for the
CP-PACS data depend slightly on the quark mass, even
though we work in a mass-independent scheme.
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